Quantitative Homogenization of Analytic Semigroups and Reaction–diffusion Equations with Diophantine Spatial Frequencies
نویسندگان
چکیده
Based on an analytic semigroup setting, we first consider semilinear reaction–diffusion equations with spatially quasiperiodic coefficients in the nonlinearity, rapidly varying on spatial scale ε. Under periodic boundary conditions, we derive quantitative homogenization estimates of order ε on strong Sobolev spaces H in the triangle 0 < γ < min(σ − n/2, 2− σ). Here n denotes spatial dimension. The estimates measure the distance to a solution of the homogenized equation with the same initial condition, on bounded time intervals. The same estimates hold for C convergence of local stable and unstable manifolds of hyperbolic equilibria. As a second example, we apply our abstract semigroup result to homogenization of the Navier–Stokes equations with spatially rapidly varying quasiperiodic forces in space dimensions 2 and 3. In both examples, a Diophantine condition on the spatial frequencies is crucial to our homogenization results. Our Diophantine condition is satisfied for sets of frequency vectors of full Lebesgue measure. In the companion paper [7], based on L methods, these results are extended to quantitative homogenization of global attractors in near-gradient reaction–diffusion systems.
منابع مشابه
A numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملCenter Manifolds for Quasilinear Reaction-diffusion Systems
We consider strongly coupled quasilinear reaction-di↵usion systems subject to nonlinear boundary conditions. Our aim is to develop a geometric theory for these types of equations. Such a theory is necessary in order to describe the dynamical behavior of solutions. In our main result we establish the existence and attractivity of center manifolds under suitable technical assumptions. The technic...
متن کاملOn the Global Existence of Mild Solutions of Nonlinear Delay Systems Associated with Continuous and Analytic Semigroups
In this paper we prove sufficient conditions for the existence of global solutions of nonlinear functional-differential evolution equations whose linear parts are infinitesimal generators of strongly continuous and analytic semigroups. We apply the obtained results to a diffusion problem. 2000 MSC: Primary: 47J35, 34K12, Secondary: 34K90, 35K20, 35K60
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001